Kommentare

Seki Takakazu


Seki Takakazu, auch bekannt als Seki Kōwa, wurde im März 1642 in Fujioka (Japan) geboren und starb am 24. Oktober 1708 in Edo (heute Tokio), Japan. Er wurde in eine Familie von Samurai-Kriegern hineingeboren. Sehr jung wurde er jedoch von einer Adelsfamilie namens Seki Gorozayemon adoptiert. Der Name, unter dem er heute bekannt ist, leitet sich von der Familie ab, die ihn adoptiert hat.

Seki war ein "Wunderkind" in Mathematik. Er lernte selbst Mathematik und wurde von einem Mitarbeiter des Hauses, in dem er im Alter von neun Jahren lebte, in das Thema eingeführt. Seki baute bald eine Bibliothek mit japanischen und chinesischen Büchern über Mathematik auf und wurde als Experte anerkannt. Es wurde als "der arithmetische Weise" bekannt.

1674 veröffentlichte Seki Hatsubi Sampo, wo er fünfzehn Probleme löste. Die Arbeit zeichnet sich durch eine sorgfältige Analyse von Sekis Problemen aus, und dies war sicherlich einer der Gründe für seinen großen Erfolg als Lehrer. Seki war der erste, der 1683 Determinanten untersuchte. Zehn Jahre später verwendete Leibniz unabhängig Determinanten, um simultane Gleichungen zu lösen, obwohl Sekis Version die allgemeinste war.

Seki entdeckte auch Bernoullis Zahlen vor Jacob Bernoulli. Er hat Gleichungen untersucht, die positive und negative Wurzeln behandeln, aber keine komplexen Zahlen verstehen. Er schrieb in magischen Quadraten, wiederum in seinem Werk von 1683, und studierte 1661 ein chinesisches Werk von Yank Hui. Dies war die erste Behandlung des Themas in Japan.

Unter anderem untersuchte Seki die diophantinischen Gleichungen. Beispielsweise betrachtete er 1683 ganzzahlige Lösungen von ax - by = 1, wobei a, b ganze Zahlen sind. Seki werden auch wichtige Entdeckungen bei der Berechnung zugeschrieben.

Video: Seki Takakazu (Oktober 2020).